If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7b^2+8b-12=0
a = 7; b = 8; c = -12;
Δ = b2-4ac
Δ = 82-4·7·(-12)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-20}{2*7}=\frac{-28}{14} =-2 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+20}{2*7}=\frac{12}{14} =6/7 $
| Y+17=y-47 | | 48=2x+5x-8 | | (16x-4)+(2x+13)=x | | -6x+18=-7+x | | 22-8(-8n-6)=-6n | | -7x-1=83 | | -4/x+16=-3 | | 5x-3099=2027-2x | | -57=-r+-33 | | 497/5=-6x-4x-3/5 | | 7(1.064x+1)=9 | | 23+5b=-72 | | 497/5=-6x-4x-3 | | 8,426=42x+2,000 | | 3x-7=8+6(x=2) | | -4-0.2x+11=-0 | | 3y-5=7+11 | | 7x-19=x+29 | | 2(3+5n)-4n=n+1 | | 4.5=2.6-0.6y | | 16+49m=79 | | X+15=9-6(4x-1) | | -12x+10=7x-4 | | 200/20=x | | -9w-5=6w=19 | | 9x+3=7+23 | | 33-2x=13+8x | | 175+25/20=x | | x-1=-12x+10 | | 75.00=5+10h | | 29=-8y-3 | | 8x-3=x-1 |